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Abstract

In a previous paper, the author introduced a new class of multivariate rational interpolants, which
are called Optimal Padé-type Approximants (OPTA). There, for this class of rational interpolants,
which extends classical univariate Padé Approximants, a direct extension of the “de Montessus de
Ballore’s Theorem” for meromorphic functions in several variables is established. In the univariate
case, this theorem ensures uniform convergence of a row of Pade Approximants when the denominator
degree equals the number of poles (counting multiplicities) in a certain disc. When one overshoots the
number of poles when fixing the denominator degree, convergence in measure or capacity has been
proved and, under certain additional restrictions, the uniform convergence of a subsequence of the
row. The author tackles the latter case and studies its generalization to functions in several variables
by using OPTA.
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1. Introduction

The subject of this paper is the extension of de Montessus de Ballore-type theorems to the
multivariate case. We start with a brief overview on the current state of the problem. First,
in the univariate case, it is well known that the classical de Montessus de Ballore’s Theorem
asserts the uniform convergence of the sequend@:gin]},.n Padé Approximants (in
the sequel PA) to a functiof) being meromorphic in a certain digdk = D (0, R) with
preciselym poles inD (counting multiplicities), in compact subsets B\ {z1, ..., Zn},
wherezs, ..., z, are the poles of in D. Moreover, we know that each pole béttracts
as many poles of PA as its multiplicity. It is clear that this result deals with the problem of
describing then-meromorphic extension of an analytic function in a neighborhood of the
origin in terms of the asymptotic distribution of the poles of PA (see[6]y.Also, in this
sense, one can consider the problem of the convergende o#]},.n to f in its disk of
m-meromorphy; that is, the maximal digk, = D (0, R,,) wheref has at mosin poles
counting multiplicities. Letu the number of poles dfin D,,. If f possesses precisehy
poles inD,,, i.e. u = m, the classical de Montessus de Ballore’s Theorem works and if
w=m — 1, Buslaev et al. show, by applying certain results due to Hadamard, the uniform
convergence of a subsequence|af/m]}, .y to f in compact subsets db\ {z1, e, zﬂ}
(see[7]). For the general caseQu<m, Baker and Graves-Morris conjectured (see e.g.
[4]) that the same conclusion was valid. However[4hthis conjecture was rejected by
means of a simple counterexample for the case 2 andu = 0. In this sense, a result of
general character is contained in the following theorem (se¢22gp. 90]or [7, p. 539]).

Theorem 1.1. Let f be holomorphic in a neighborhood of the origin and ek m the
number of poles of fi®,, = D (0, R,,), withm > 0 a non-negative integer. If the poles of
f are denoted b){zl, e, Zu}a then there exists a subsequencé[afm]},.n converging
uniformly (even geometricallylo f in compact subsets @,,\ ({zl, e zﬂ} U S), where
the set S contains a number of points less than or equaltou — 1. Moreover,each pole
of f attracts as many poles pt/m] as its multiplicity.

Under additional restrictions, another result of general character for the convergence of
subsequences was given[8j.

Another approach which extends de Montessus de Ballore’s Theorem is related to the
use of weaker versions of convergence, such as convergence in capacity or in Hausdorff
measure. In this sense, it is possible to give results of convergence of the whole sequence
{[n/m]},cn- Moreover, convergence in capacity can be achieved even for sequences of the
type{[n/m,]},cn, Where lim infm, > p and lim(m, /n) = 0 (se€[19]).

There is a considerable amount of difficulty in the extension of this theory to the multivari-
ate case, whichisthe purpose of the present paper. Thus, the direct extension of de Montessus
de Ballore’s Theorem to several variables, with rational approximants determined by the
“accuracy-through-order” principle (sgE2]), is a problem which, in a general sense at least,
can not be solved (see the counterexamples givg2Pi)), even though several approaches
exist in this direction ([10,23,13,14]). Nevertheless, several authors observed problems in
the proofs in these works (see €2R, p. 95]or [18, p. 213]). Moreover, approaches made
following principles other than “accuracy-through-order” (by Ch#fly Cuyt[12,17], and
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Guillaume[20]) do not provide a totally general extension of de Montessus de Ballore’s
Theorem in the following sense: if we have a meromorphic function in a polydi€; R)

andQ is a minimal polynomial which kills the poles 6in the polydisc, then, in general,
none of these approaches guarantee uniform convergence of the respective rational approx-
imants in the whole polydisc. To this end][itB] we introduced a new class of multivariate
rational approximants, which we call OPTA, that@ptimal Padé-type Approximan(is

fact, they are Padé-type Approximants, using the terminology due to Bre@hskidesign

the rational interpolants with prescribed denominators, se¢2jlso[1] for the multivariate

case), in which the usual “accuracy-through-order” principle to determine the denominator
is replaced by certain minimal norm conditions. A similar approach was independently
followed by Guillaume et al[21], in such a way that their approximants may be seen as

a particular case of our OPTA. For this new class of rational approximants, which extends
the classical univariate PA, we proved[i8] two theorems which provide the extension

of de Montessus de Ballore’s Theorem for sequencé¢f\af/ M1}, .n OPTA of f (N and

M denote the respective exponent sets for the numerators and denominators of the OPTA).
In this case, there exist a complete Reinhardt doniaiffor the definition see e.d23,

pp. 32—-33]) and a non-zero polynom@lwith exponent sei, uniquely determined up to

a multiplicative constant, such th@t is the domain of the power series @f. But, what

can be said wheM is “larger” than necessary; that is, whéris not unique? The present
paper is essentially devoted to give an answer to this question and provide a multivariate
counterpart of Theorem 1.1. In this sense, we must point out that there exist similar results
due to Cuyt and Lubinsky, but only for tiMultivariate Homogeneous Padé Approximants
(se€[12,17]).

On the other hand, | wish to point out that Montessus-type theorems using convergence
in measure or capacity have been given for multivariate functiof$sh following the
“accuracy-through-order” approach, and1®], for the homogeneous approach. We shall
deal with such extensions for our OPTA in a forthcoming paper.

The paper is organized as follows. In Section 2, we summarize the definition and some
algebraic properties contained in our previous p&P&; while in Section 3 the convergence
results of this article are stated. In Section 4 these results and the computational viability
of these approximants are illustrated by means of some numerical examples. Finally, in
Section 5 the proofs of the main results are shown.

2. Auxiliary results

Hereafter we make use of standard multi-index notation, that ig, fer(ay, ..., ag) €
N z=(z1,...,24) € C¢, v = (v, ..., v9) € (R\ {0})?, andA>0 we denote:

ol =oq! ol lal =0+ -+ oy, I (2) =z, I () :ocj,z“zzil---zz”’,and
AV = (A", ..., A%). Furthermore, for any, z’ € 4, we will write < 7/, 7 >= Zflzl 57
andzz’ = (2124, . ... 2a2).

In the same way, for two given setis B N, the “sum” of these sets (related to the
set of exponents corresponding to the product of two polynomials) is defined by

A+B={(a+b):ac A, be B}.
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Analogously, the “difference” set is given by
A—B={(a—-b):acA, be BJNN,

Now, we proceed to recall the definition and main properties of the new class of multi-
variate rational interpolants introduced[i8]. We start with a definition concerning linear
mappings.

Definition 2.1. Let T : C" — C" be a linear mapping witm € N\ {0} andn € N and
let 6 be a real number such th@t 1. Thenx = (x1, ..., x,;) € C" is said to be &trong
pseudominimum of for [m n, 5] with respect to a certain norin| in C" if x1 = 1 and

ITx]| <omin [[Ty]l.
y1=1

In a similar way, we say that € C" is aweak pseudominimum offdr [m n, 5] with
respect to the norm || in C*and|. ||, in C™ if ||lx|, = 1 and

7l ééllrll?iﬂ Tyl

*

Making use of the definition above, our new class of multivariate Padé-type Approx-
imants, which we call OPTA, is introduced as follows. ldete N\ {0} and consider a
(possibly formal) power serieg (x) = > fux®* (if o ¢ N?, we definef, = 0 for

. aeN?
consistency).

Definition 2.2. If N, M are two finite subsets i¢ with 0 € M, Ris a polyradiusk > 0
(hereafteritmeansth& = (R1, ..., Ry)with R; > 0,fori =1, ..., d)andd>1, we say
that the rational functionis a strong OPTA of for [N, M, R, 5] if the following holds:

@ r = 5 with p € ny, g € my (if L is a finite subset ofN? andt is a polynomial,
hereafter the notatione n; means that is the exponent set @f.
(b) Considering the sdf = E (N, M) = (N + M) — M)\ N and setting
g (x) = Y qpxP and the linear functio” : C** — C*£, such that forM # {0}
peM
maps the vectos = (u,g)ﬁeM onto the vecton = (Z[;eM uﬁf“’ﬁRa)aeE’ then the

vector (¢p) ,_,,iS a strong pseudominimum dffor [#M, #E, 6] with respect to the

peM
normil.||4 in C*E where now we takeg as the first component of the vecioe cHM.

(c) p is the Taylor polynomial of the functiofig with N as its exponent set; that is,
(fg—p)(x)= > exx™

aeNN\N

Remark 2.3. Under the same conditions, we say thiata weak OPTA offor [N, M, R, 5]
when the requirements above are satisfied, but now in (b) the v(@gt)%reM is taken as a

weak pseudominimum G for [#M, #E, ] with respect to the norrit. || in C*# and the
norm||.||l« in C*¥ (Definition 2.2 in[18]).
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Remark 2.4. As we proved in[18, Proposition 2.3}his class of strong (weak) OPTA
extends the classical univariate strong (respect. weak) Padé Approximants, where if there
is no interpolation defect in the rational interpolation problem, the solution is said to exist
in a strong sense (Baker’s definition of PA[#]), while if there is an interpolation defect

and only the linear version of the rational interpolation problem has a solution, then this
solution is said to be a weak solution (Padé—Frobenius’ definition of PA)n

Since our aim in the present paper is to provide results of geometrical convergence of
OPTA sequences, we now state the following definition:;

Definition 2.5. Let f and R be as above(Ny),cn and (My)en are two sequences of
finite subsets i\ with 0 € M, for eachk, ando = (o (k))zcn andd = (k) cpy tWO
sequences of real numbers( co) and[1, co), respectively, such that lim, », o (k) =
oo and limg_ o (5k)1/0(k) = 1. A sequence of rational functioris,),.n is said to be a
o-geometrically strongweak) OPTA of f for [(Ni)ien » (Mi)ien s R, 8, o] if for each

k € N, ry is a strong (weak) OPTA dffor [ Ny, My, R, 6k].

On the other hand, since from the definition of OPTA the computational viability of these
approximants does not seem clear, we must point out that the definition above does not
essentially depend on the norm, which enables us to replada-iherm by any¢ ,-norm
(for instancep = 2). Indeed, in practice (see the numerical examples displayed in Section
4), these OPTA can be computed by a straightforward procedure, since their denominators
arise as least-squares solutions of overdetermined systems of linear equations.

3. Convergence results

In order to establish our main theorems we need a previous result concerning some
algebraic aspects in the theory of functions of several variables. As far as we know, there
is no proof of such a result in the literature, for which we include a complete proof of it.
Moreover, we think that it is of independent interest.

Let 2 be an open set it? andf a holomorphic function in the open sét c Q. For
the pair(f, Q), denote I= | (f, Q) = {p polynomial: (fp) € O ()}, where as usual, the
notationg € O (D) means that the functiog (or some extension of it) is holomorphic in
some open set containiry It is clear that | is an ideal df [x] = C[x1, ..., x4], the set
of polynomials ind variables with complex coefficients. Under these conditions, we have

Proposition 3.1. The set is a principal ideal;i.e.,there exists a polynomial p i@ [x] so
thatl = (p). That s, lis generated by p.

Now we are in a position to state the extensions of Theorem 1.1 to the multivariate case.
First, let us specify some notations.
Indeed, IetNy)keny » (Mi)keny and(Ex)ien € N9 be as above, wheitgy, = E (Ni, My).

For any vecton € R? with v > 0, denote by, (k) = min [< v, 0 >0 € Nd\Nk] and
oy (k) = min{< v,a >: o € E} (if Ex = Jthena, (k) = A, (k)), where for simplicity
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we write A1 (k) = Aq,...1) (k) andoq (k) = 01,1 (k). Hereafter, for a complete Rein-
hardt domair® in C?, avecton € R? with v > 0, and a polyradiug > 0, we shall denote
py (R, D) =inf{i>0:P(0,Ri"") C D} whereP(z, r) denotes the polydisc centered
in z € C? and with polyradius > 0 (observe that i’ (0, R) c D, thenp, (R, D) < 1).

In what follows, we suppose théis a holomorphic function in a neighborhood of the
originin C?, Q (x) = Y.y Qpx” is a polynomial, with exponent st ¢ N“, 0 € M
andQ (0) > 0(Qgp, > 0, for somef, € M, respectively), and we denote Bythe domain
where the Taylor expansion Qff converges.

Theorem 3.2. Take a polyradiu® > OsuchthatP (0, R) C D.Let(Ny);2, be asequence
of finite sets inN?¢ such thatlimi_ « 41 (k) = co and (r)z>, be aci-geometrically
strong(respect. weakPPTA of f for] (Ni)f2., . (M)2,, 6, R, o1], whered is taken so that

1/o1(k)

liMmi_ oo (6k) = 1. For this sequence and for artye N, considerr;, = ﬁ, where

gk
gr and p; denote the normalization of the polynomiajsand p;. in order to satisfy that
1= maXgey |Gpxl-

Then, for each subsequer((z}aj)‘;io converging to a polynomia? (x) = ZﬁeM Pﬁxﬁ,
with 1 = maxgey |P/;\, (in fact, such a subsequence always exigte)have thatPf <
O (P (0, R)).

Moreover, for each € R? withv > 0, u € [0, 1] ande > 0, if we denote: = Ry* and
L. = {x eC?: 0P ()| < 8},We have

— /4 (kj)
lim <||f — g Hoo,P@\L) " <p, (D) < 1. (3.1)

J—>00
Remark 3.3. Observe thatifp) = I (f, P (0, R)), thenp/P; that isp divides toP. In the
special case wher@ = p, we have Q/P Moreover, it is easy to see that the conclusion of
Theorem 3.2 above holds for the whole sequence of strong (respect. weak) OPTA, where
now gy converges t®, normalizingzx andQ so that mayc y |7p.«| = Maxgers |Qp| = 1,
gk (0) >0 andQ (0) > 0 (respectgg, x >0 andQp, > 0, for somef, € M), provided
thatQ is M-maximal (definition introduced if21]); that is:

if Pemny andQ/P, thenP =cQ withc € C.

Finally, if the conditions of Theorem 2.4 |@8] hold, itis easy to see th@tis M-maximal
and that the conclusion above is valid, but Theorem 2[48halso ensures the geometrical
convergence of the sequengeto Q.

Theorem 3.4. Let R > 0 an arbitrary polyradius. Foru € RY with u > 0, denote
Sy (k) = max{<u,a>:a¢c E} (if Ex = J we takeS, (k) = a,(k)) and suppose

. Suk . . ~
that lim Su (B = 1 and that,without loss of generality;Q) = | (f, P (0, R)) where
k—o00 Oy D
R =sup|{RZ": /> 0and P (0, R\") C D}. For each kconsiderr; = Q, with g and

qk
Pr asin Theoren3.2.
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Then, for each subsequer‘((z”ﬁj)jio converging to a polynomiaP (x) = ZI,GM Pﬁxﬁ,
with 1 = maxge ]Pﬁ], (in fact, such a subsequence always exigtshave thaQ/ P.

Moreover, in both strong and weak cases, for edack 0 so thatP(O, R/l“) c 9,
and for eachs > 0, u € [0,1] andv € R? with v > 0, if we denote- = R2“x* and
L, = {x eCy:|P(x)| < e},we have

_— 1/4,(k;)
im (Hf — 1y, HOO‘P(T”\L) " <p, (D) < 1. (3.2)

Jj—o00

Remark 3.5. As in [18], we give two slightly different extensions to Theorem 1.1. In
Theorem 3.2, the numerator lattio@¥;);- ; can be chosen with total freedom, but we need

to select a suitable polyradidgto ensure the convergence of OPTA. On the contrary, in
Theorem 3.4 if the sequence of numerator lattices satisfies certain natural condition, the
results on convergence are valid in a larger set, independent of the choice of the polyradius.
To illustrate this difference, consider the univariate case. In fact, in the particular case when
d=1andM ={0,1, ..., m}, withm = #M — 1, in order to apply Theorem 3.2 we have
total freedom to select the sequeridg);” ,, but we must choose a radiRbelonging to

the interval(0, R,,), where for eactlk € N, R,, denotes the-meromorphy radius df In

this situation, the convergence is achieved in compact subse®pR)\ P 1 ({0}). On the

. o S1(k . - .
contrary, ifthe natural condmokn Ilm% = lis satisfied, then by applying Theorem 3.4,

—0 01

we can guarantee convergence in compact subsets of the largeiser,,,) \ P~ ({0}), for
anyradius® > 0. Moreover,if(Q) = | (f, P (0, R,,)) with Qa polynomial of degreg <m,
then in order to conclude th&/ P, in Theorem 3.2 we must choose a radius belonging to
the interval(R,—1, R»), while in Theorem 3.4 we can choose any radius- 0. In this
sense, we consider Theorem 3.4 as the proper extension of the univariate Theorem 1.1, even
when dealing with the univariate case, where the numerator lattiiég$: ; can be quite

freely chosen but the s&tcontains a number of points less than or equakte u.

Remark 3.6. Itis easy to see that the conclusion of Theorem 3.4 above holds for the whole
sequence of strong (respect. weak) OPTA, where fiosonverges td@, normalizingg

andQ so that mayey |Gp x| = maxgey |Qp| = 1,Gx (0) =0 andQ (0) > O (respect.
dp,.k=0andQp > 0, for somef, € M), provided thaQQ is M-maximal. Finally, if the
conditions of Theorem 2.5 if18] hold, it is easy to see th is M-maximal and that the
conclusion above is valid, but Theorem 2.518] also ensures the geometrical convergence
of the sequencg; to Q.

4. Numerical examples

We now test the results on convergence of OPTA sequences to meromorphic functions

analyzed in the previous section by means of some illustrative numerical examples. The

results displayed in the tables below are related to the fungtion y) = *mw
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Table 1

n Ey 2,1 (z1) Ey 3;1(z1) Ey, 41 (z1) En (f) (z2)
3 .2601E-03 .1116E-04 4348E-06 .2707E+00
6 .6023E-07 .2869E-09 —.2571E-12 .3388E-01
9 .2161E-11 .3109E-14 .0000E+00 4235E-02
12 .0000E+00 .0000E+00 4441E-15 .5294E-03
15 .0000E+00 A4441E-15 .0000E+00 .6618E-04
16 —.4441E-15 .0000E+00 .0000E+00 .3309E-04

with fQ being holomorphic itC? when we take&) (x, y) = 1—2 (x + y)+x2+ y2. Numer-
ical results of rational interpolation for this function have been previously shojt/3j@8].
For eachn € N consider the set§/, = M, = {a € N2 : o + az<n}, and forn,m € N
ands € (0, co) denote by, ,,.. the unique (in this case) rational function for which the con-
ditions of Definition 2.2 hold, withvV = N,,, M = M,, andR = (s, s), S0 that in this case
the denominator vector in Definition 2.2 (b) is taken as a strong pseudominimuirfoof
[#M, #E, 1] with respect to the least-squares ndfri, in C*£. From Remark 2.9 ifi18],
(rn.m:s) I8 @c1-geometrically strong OPTA dffor [(Ny)uen » (Mi)pen - R, 0, 1],
with ¢1 as in Theorem 3.2 andl as in Proposition 2.1 ifiL8]. It is easy to check that for
m > 2 the hypotheses in Theorem 3.4 with= (1, 1) are fulfilled. These choices for the sets
N, M andR are the most natural if we take into account the symmetry propertfeslafier
these conditions, in the tables the erfgr— r, ,,.,) attained in a certain point C?is
denoted byE, ,,.s (z). All the calculations were performed with Microsoft Fortran Power
Station.

-1 11
Results displayed in Table correspond to the poiny = 2ﬁ, Tﬂ which be-

longs to the domain of convergence of the Taylor serie§ tifis easy to see that the
speed of convergence is similar for the OPTA sequences corresponding=®, 3, 4,
although the first one seems to be, in principle, the most suitable. In addition, the speed
of convergence of these three sequences is much faster than the corresponding for the se-
quence(T, (f) (z1)),en, WhereT, (f) denotes theith Taylor polynomial forf; that is
(f =T () (x,y) = Z(i,j)eNz\N,l ei,jxlyj- The errorsk, (f) = f-T.(f) are dis-
played in the fifth column.

In Tables2 and3, we show the sequences of erréis,,.; for the pointszz = (1, 1) and
z3 = (1.64 1.64) which are placed outside the domain of convergence of the Taylor series
of f (in the first case we take = 4 in addition tos = 1 to show that the results are rather
independent of the choice of the polyradius). Again, we note that the convergence holds
for the sequences (in spite of that, of course, the convergence is not as fast as ih);Table
even forzz which is close to the singularities &fln the last column the sequence of errors
(R (f))yen Is displayed, wher®, (f) = f — T, (f Q) /Q andT, (f Q) denotes theth
Taylor polynomial forfQ. Although these last rational approximants seem to be the best,
the results in Table and3 show that our OPTA provide similar rates of convergence.
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Table 2

n E; 2.1 (z2) Ey 2:4(z2) Ey 4.1 (z2) Ep 4.4 (z2) Ry (f) (z2)
8 —.1832E-02 —.1792E-02 —.2535E-05 —.3053E-05 —.1755E-02
10 —.6402E-04 —.6253E-04 —.4126E-07 —.4020E-07 —.6139E-04
12 —.1597E-05 —.1559E-05 .1579E-07 —.9049E-07 —.1532E-05
14 —.2216E-07 —.2411E-07 —.7907E-08 —.5816E-06 —.2860E-07
16 5454E-07 —.6879E-07 —.7393E-08 —.2911E-07 —.4142E-09
Table 3

n Ey 2.1 (3) E; 3;1(23) Ey 4:1(z3) Ry (f)(z3)

8 —.9982E+00 .7123E-01 —.6809E-02 —.9787E+00
10 —.9104E-01 .3890E-02 —.2609E-03 —.8927E-01
12 —.5982E-02 .1712E-03 .1286E-03 —.5866E-02
14 —.2543E-03 .9524E-02 —.5713E-04 —.2900E-03
16 .9182E-03 —.3768E-04 —.1945E-03 —.1117E-04
5. Proofs

For the proof of Proposition 3.1, we need to recall the definition of codimension given
in [23, Definition 7.5, p. 22)).

Definition 5.1. Let X be an open subset @f?. An analytic setA ¢ X has codimen-
sionsata € A (in symbols,s = codim, A) if there exists ann—dimensional, but no
(s + 1) —dimensional, affine subspadeof C? such that is an isolated point of N A.
For nonemptyA, we define

codim A = min codim, A.
acA

Now, we need the following Lemma

Lemmab5.2. Ifp,q € C[xy, ..., x4] \C are relatively prime withl > 2, then the analytic
setp~1 ({0})) N ¢~ ({0}) has codimension at least 2.

Proof. The proof is quite simple. Indeed, we can write

I m
p(x)=> pi(x)andg (x) =) g (x),
i=0 i=0

where for each, p; andg; are homogeneous polynomials of total degreeth I, m > 0
and pig,m # 0. We takev € C4\ {0} such thatp; (v) ¢, (v) # 0. So, it is easy to see that
for eacha € C? the polynomialsf (r) = p (a +tv) andg (1) = p (a + tv) witht € C
have degre¢ andm with leading coefficien; (v) andg,, (v), respectively. By a linear
change of variable, if needed, we can assumeithae; = (1,0, ..., 0).
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Leta € p~1({0}) N¢g~1 ({0}). Applying Proposition 1 given ifil1, p. 159], there exist
polynomialsA, B € C[x1, ..., x4] such that

Ap + Bg = Res(p, q,x1) € Clxz2,...,x4]\ {0},

where by Resgp, g, x1) we denote theesultantof p andq with respect tor; (for detalils,
see e.g[11]). In this situation, we only need to know that R@sq, x1) is a non-zero
polynomial which does not depend on

Takew € C?~1\ {0} suchthatthe polynomial(s) = Res(p, ¢, x1) ((az, . . ., aq) + sw)
does not vanish identically. Ldt = {x eCl:x=a+s0,w)+1-e1, withs,r € (D}.
Thusr is a 2-dimensional affine subspace and itis clearthatI’ N p~1 ({0}) g1 ({0}).
Finally, observe that the sétn p~1 ({0}) N g1 ({0}) has finite cardinality, since if €
I'np=1{0o})ng=1 {0}, thenk (s) = 0 and thus can only take a finite number of values,
51, ..., sk. Also, for eachj, p (a +s; (0, w) + ¢ - e1) = f (r) = 0 and sa can only take a
finite number of values. [

Now, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1.The result is well known forl = 1. Suppose that >2. Since

0 e I, we assume that there exists € I\ {0} (in other case I= (0)). Without loss

of generality, we can suppose th@t possesses a non-vanishing intersection with each
connected component ¢f.

k
Now, let 0 = TJ] pl.“" be the decomposition o in irreducible polynomials of
i=1

C [x1, ..., xq] and consider the family of setg§ = {x € pi_l{O} :Vpi(x) = O} with

i €{1,...,k}, whereV f denotes the gradient éfthat is, the vector whose components
are the partial derivativet%cij, with 1< j <d. Given the open sé2in C?, take the new open
setQ* = Q\ (Ule (Vi U U.';:l’j# pi_l {0 n pj_l{O})). By applying Lemma 5.2, and
taking into account that the finite union of analytic sets of codimension at least 2 also has

codimension atleast 2 (see e.g. Sections 3.5 and @J)jmve obtain thatodim Q\Q* > 2.
On the other hand, tfiis a holomorphic extension &) on Q2 and we denot¢ = //Q,

we have thatf € O (Q*\ (Uf-‘zl plfl{O})). Moreover, if we take for each(1<i <k)
the setS; = {x e Q*n pl-_l {0} : f ¢ Ox}, where now the notatiop € O, means that
g € O({x}), itis easy to see tha{tx e fe ox} = U, S;. Thus, ifx € §; then
fp}" € Oy, and since; is irreducible inO, (becausé p; (x) # 0), we have thaf p;’ =
p;"hfl - hé in terms of the decomposition in irreducible factors(df , wherefi; € N
forj € {1,...,s}andm = m (x) € N. Now, for each with S; # J, consider; € S; so
that min{m (x) : x € S;} = m (x;) = m; (if S; = & we takem; = «;). We shall see that
| = (p), with p = [Ti_y p} ™

Indeed, for eacli and for anyx € S;, the fact thatfpf"' = p:-"hljl ce hfs implies
that fp ™" = pf"—’""hfl .. 1P e O,. Therefore, we have thafp e O (2*) and,
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sincecodim Q\Q* > 2, by applying the Second Riemann Singularity Theorem[@&eop.
23-24)), thenf p € O () and hencep € I.

Finally, if ¢ €  and g, g’ are holomorphic extensions ¢p and fg on £, respectively,
then by the Identity Theoren, - g = p - ¢’ in Q. So, for anyi with S; # &, we have

B Bs i . L
thatg’ = hla h,';‘q € Oy,. Thus, 74 % = € Oy, and if we show that this fact implies that
p;

i

—m;

i 1, for anyi, then we conclude theﬂ 1p " = p/q and it settles the proof. It
|s, however, clear, because if we suppose ﬂﬁ‘at itq for somei, then the decomposition
of ¢ in irreducible polynomials will be of the form = p;} ]_[';:1 q;f, with s < o — m;.

-1
On the other hand, frorﬁ[ lq] /p M e Oy, we have tha<pf"'_m"_5> (op =
(pf""’”"’“) {oph n (]_[] 14, ) ({0} in a neighborhood of;. Thus, by applying

-1
Lemma 5.2(pf"'_m"_s) ({0} in a neighborhood af; will have codimension at least 2

and so 1/5"”""* will admit a holomorphic extension on a neighborhoodrptby the
Second Riemann Singularity Theorem (§2&, pp. 23—24]), which is not possible[]

Now, for the proof of Theorem 3.2 we need the following Lemma givel®jh.emma 2
pp. 286—287].

Lemma 5.3. Let f be a function defined in a neighborhood of a 8étx D, where D’
is a domain inC?~* and D, is a closedpounded domain in the;—plane. Suppose that
f is holomorphic in a neighborhood d» x 8D, and that for each fixed’ ¢ D’ it is
holomorphic with respect tg; in D;. Thenf is holomorphic inD’ x D,.

Proof of Theorem 3.2.Letv € R? with v > 0, € [0, 1], Z € (p, (R, D), 1) and denote

r = Ry’ and R = R/ V. Since for eactk, r; = Q, with g; and p; as above, for
N qdk
x € P(0, r) we can use the method of proof due to Karlsson and WERH, yielding:

1
(Of ik — Q) (x) = (zm_) /hp " Q)
0

ac+l
ae(Ne+M)C
Ax)
( 1 ) / (Q (fgk — pr)) (y)
. a+1
2mi e (NetM) boP OR y
B(x)
Now, we have
~ <o,v>
AT SIS p(o.7) 1981 p(0.5) PN Y
aeN\ (N +M)

sconst 101, p(o 5) X ()T

aeN\(Ny+M)
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and then

Tim (sup{lA (0] : x € PO, AN << 1. (5.1)

On the other hand, one also has

B(x)= > cwc“( > Qﬁxﬁ)
o€Ek pe{0eM:0+0e(N+M)}
with (fgx — pr) (x) = Y. cxx*. Hence,
aeN\ N,
|B (x)| <const Y |cy| R*pu~*v>

oeEy

<const - po® > R*

aeEy

> GpiSap

peM

> qpiSap

peM

Lconst - urp™ N5 (k) Y ‘Z Opfap

<const - uk,u"“(k) > R*

aeEy

R%const™
acEy |feM

ok <o,v>
Sconst (WS BNQFN o) T A7

acEy

)

whereu; = |gx (0)| (: 1 =max|gp | . respect), 1 =100 <= max|Qp
peM ’ : PeM

respect) .

Therefore

Tm(sup{|B ()] : x € P, AN < < 1 (5.2)

Thus, from(5.1), (5.2) and sinced,, (k) <o, (k), we obtain that

Tm (10 — Qrllac.pon) ™" <pi <1, pe (0.1, 2 € (p, (R. D). 1). Con-
sequently,
Tm (123 — Qrllsc.pon) ™" <upy (R.D) = p, (D). (5.3)

On the other hand, there exists(x) = Y".,, Ppx” a polynomial with 1= maxgc y; | Pg|
and a subsequen(@;{j)j‘;o that converges t®. So, from this and5.3) we concludg3.1).
Now, let us see thaf P € O (P (0, R)). Since fP € O(P (0, R)\Q~1{0}), it is

sufficient to see that for eacty € P (0, R) N Q~1{0}, fP has an analytic extension
to a neighborhood ofg. Thus, using the continuity of such an extension and the fact

thatP (0, R) N Q~1{0} c P (0, R)\Q~1{0}, the conclusion thaf P is holomorphic on
P (0O, R) easily follows.
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Toproveft, letyg € P (0, R)N Q~1{0}. We can assume thag = (x{, xo,) € C 1 x C,
with Q (x{. xo, + -) not identically equal to zero. Take d > 0 so that

[¥=(".x0, +1) e € |¥ — x| <oand || =e} = K < P . B)\Q (0}
and

{x:(x/,xod+t) eC?: [x" = xg| < oand ]z <28} =UCP(@OR).

Thus, fP € O(K). For ¥ e C ! with |x’ — x| < &, we have thatf (', xq, + )
is meromorphic in the open disk (0, 2¢) c C. Moreover, if it has a pole of ordep
atr € D(0,2¢), by (5.3 we have thatP (x. xo, + ) has a zero of order at leapt
atr, and sof P (x', xo, + -) can be extended analytically i (0, 2¢). If we define f P
in U N 0~1{0} making use of this extension, applying Lemma 5.3 withx D; =
{x = (¥, xq, +1) € C: |x' — x| < dand ] < e], we conclude thaf P has an ana-
lytic extension to a neighborhood of. [

Now, in order to get the proof of Theorem 3.4, we need the following result (Proposition
3.31in[18]).

Proposition 5.4. Let(Nk)keN s (Mk)keN ’ (Ek)keN s (0'14 (k))keN ’ (Su (k))keNvéi 01 be as
above and: € (R*)d such thatklim “

—00 Oy

sider a functionf holomorphic in a neighborhood of the origin. Theh,(r);2, is a
o1-geometrically strongweak) OPTA of f for [(Ni)52, ., (M2, . R, 6, 01], we have
that for any /. > 0, (rx)2 4 is a o1-geometrically strongrespec. weakPPTA of f for

[(Nk)lfil’ (M), R, 9, 01], whered = (Sk)kef\l CIL,oo andk”_)moo (Sk)l/ol(k) .

= 1.LetR > 0 be a polyradius and con-

Proof of Theorem 3.4.From Proposition 5.4 we get that for ady > 0, (rx);2; is a
ag1-geometrically strong (respec. weak) OPTA jofor [(Nk),fil, (M2, RA", 5, al].

So, if we apply the result of Theorem 3.2 with> 0 so thatP (0, Ri”) c D, we conclude
(3.2) and the fact tha/ P follows taking into account thak < | (f, P (0, 1?)) . O
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